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Abstract

In this paper, we empirically demonstrate the vulnera-
bility of a passthought authentication system to fake signals
generated by Generative Adversarial Networks (GANs),
and use these same signals to make authenticators more
robust. We first train a classifier that is able to authen-
ticate a subject based on their EEG signals. The classi-
fier performs a binary classification task: either the user is
who they claim to be, or not. To test the robustness of the
authenticator against attacks we train a GAN to generate
signals that mimic the EEG signals of the “positive” sub-
ject. We find that a well-trained GAN is able to generate
signals that the classifier consistently accepts. To alleviate
this vulnerability, we re-train the classifier with this GAN-
generated data. We find that the classifier re-trained against
synthetic data is both more robust against this attack, and
more accurate in accepting real data than the initial clas-
sifier. We conclude with recommendations for the design of
passthought authentication systems.

1. Introduction

Passthoughts is an authentication scheme that uses neu-
ral signals to log users into devices and services [18, 17, 12].
Users think a secret passthought to authenticate themselves
and, since these passthoughts are expressed differently from
person to person, the scheme combines both inherence and
knowledge factors in a single step [9]. With the extensive
use and ubiquity of wearable and mobile computing de-
vices, special hardware such as a custom-made earpiece can
act as a possession factor, and extend the scheme[17].

While prior work has established that passthoughts are
robust against spoofing attacks (e.g., in the case of a com-
promised passthought), little work has examined how sus-
ceptible passthoughts may be to spoofing attacks generated
from a corpus of neural data. In this threat model, an at-
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tacker with knowledge of the algorithm’s training set may
be able to generate realistic-looking data without using a
replay attack (i.e., without using training set examples to
authenticate) as using same set of signals for authenticating
multiple times might not be allowed by such systems. Let
us describe the following attack scenario.

1. We have a passthought authentication system with N
enrolled users.

2. The authentication system works by training a classi-
fier using EEG data from these N users to identify the
correct user as “positive” and all others as “negative”.

3. An attacker steals some EEG data from one of the N
enrolled users.

4. The attacker uses the stolen EEG data to generate some
synthetic EEG signals.

5. The attacker submits the synthesized signal to attempt
to log in as the target.

In this study, we use a generative adversarial network
(GAN) [6] to generate convincing neural data, and test these
generated examples on a trained passthought authentication
classifier. We find that our classifier incorrectly accepts
our GAN-generated examples, indicating that prior work on
passthoughts may have been susceptible to such an attack.
However, as a follow-up study, we train a passthoughts
classifier using GAN-generated data as negative examples,
and find that this process improves the classifier’s accu-
racy overall. We discuss recommendations for designing
passthought authentication systems that are both accurate
and robust against GAN attacks.

2. Background

User authentication systems can be described by three
factors: knowledge, something only known to the user; pos-
session, a unique physical object and inherence, a unique



identifier of a person. We need a multi-factor authentica-
tion method which utilizes these factors, but minimizes the
frustration occurred by multiple steps (e.g., entering a pass-
word, then entering a separate code from one’s phone). To
assist with the usability issues surrounding multi-factor au-
thentication, passthoughts aims to provide two factors of
authentication in a single step. A single mental task, or
passthought, provides both a knowledge factor (a chosen se-
cret thought) with an inherence factor (the way that thought
is expressed for an individual) [3, 9]. Using a custom sens-
ing device, passthoughts could provide an additional pos-
session factor, all in the same step.

GANS [6] have been used in the past for various biomet-
ric tasks like face image generation also from polarimet-
ric thermal images [20], or generation of images precondi-
tioned on brain signals [14]. Hence, we try to use such a
GAN approach to intrinsically model the underlying prob-
ability distribution of a given dataset, and use it to improve
existing authentication algorithms to make them more ro-
bust to “fake” signals.

For security, classifiers trained for user authentication
need to be highly accurate. While it is important to have
a high number of true acceptances, and correspondingly a
low number of false rejections, it is imperative to minimize
false acceptances, as false acceptances form the most dis-
astrous error in terms of security of a user authentication
system. Thus we wanted to make sure that the classifiers
that are being used for user authentication give as few false
acceptances as possible. To ensure this, we wanted to give
the classifier the most difficult negative examples for train-
ing and allow it to learn features very specific to the “posi-
tive” label. This will enable a classifier that only labels an
example as “positive” when it is highly certain about its de-
cision at the same time not increasing the number of false
negatives at a commensurate rate.

There are multiple challenges with training classifiers
with EEG data. First, the measurement of neuronal elec-
trical activity, most typically non-invasively via electrodes
arranged on the scalp, have noise which makes them diffi-
cult to process. By generating synthetic data from a GAN
that has learned from the underlying data distribution we
provide an effective means of bypassing this noise in the
data collection process [16, 11]. Second, due to the unavail-
ability of large datasets, training of state-of-the-art machine
learning algorithms that have a lot of parameters tend to
overfit, further adding to the difficulty of training robust de-
tection methods.

To help alleviate those problems, we attempt to use
GANS to generate synthetic signals, which can augment the
training set. We believe these signals could help alleviate
the risk of over-fitting, and make the authenticator more re-
silient to attacks. The paper makes the following two con-
tributions: (a) a demonstration that a passthought-based au-

thentication system is vulnerable to fake signals generated
by a GAN; (b) present an effective solution to eliminate this
vulnerability by re-training the authenticator using the GAN
generated signals.

3. Methods

In this section, we describe the two algorithms we used
in our study. First, we describe the design of the classifier
we used to authenticate users, which we trained on data col-
lected from a recorded corpus of samples. We then describe
the generative adversarial network (GAN) we used to gener-
ate synthetic signals: fake, but realistic, EEG signals based
on the observations from our corpus.

3.1. Training the classifier to authenticate users

For the system to be able to authenticate the user, the
classifier performs a binary classification task: either the
user is who they claim to be, or not.

We use two datasets in our study. The first dataset
S1 or the “negative” samples consists of EEG signals col-
lected from 30 subjects while they were presented with a
5-minute-long audio-video stimulus instructing them to per-
form a series of different mental tasks [8]. The EEG signals
were collected using the Neurosky Mindwave Mobile [13],
a consumer-grade single-channel EEG device with a sam-
pling rate of 512Hz. We collected a second dataset S or the
“positive” samples that consists of EEG signals collected
from one subject using the same Neurosky device and the
same stimulus, once a day over a period of 58 consecutive
days. For this second dataset, the EEG recordings continued
beyond the end of the 5-minute stimulus for an additional 5
minutes, where the subject was free to perform any task on
the computer, such as reading text or watching video on the
screen.

The original signals were recorded at 512Hz. For train-
ing a simple GAN model as shown in Figure 1, we first
converted the input raw EEG signals into a power spectrum.
This was done by first taking the available data, passing it
through a Fast Fourier Transform [5], taking the power am-
plitude of the signal and sub sampling it by a factor of 2.
This allowed us to have a signal that for each data point
consisted of 256 samples. The power amplitude signal con-
sisted of values that were between 0 and A, where A is the
max amplitude of the power signal. This signal was then
normalized between O to 1 or -1 to 1 based on the non lin-
earities (sigmoid, hyperbolic-tangent or other non-linear ac-
tivation functions) used in the various tasks as described in
the following sections. We drew 30,000 samples from the
“negative” dataset S7 and 40,000 samples from the “posi-
tive” dataset So. We randomly split the entire dataset such
that 30% of the data is the test set and the remaining 70% is
the train set.



We tried different binary classification approaches in-
cluding Support Vector Machines [4], Neural Networks
[15], XGBoost [2] with logistic regression learning task to
establish a good baseline for our classifier. Looking at the
empirical results, we found that the XGBoost classifier gave
the best accuracy. Below are some of the most salient fea-
tures of these classifiers that we trained.

3.1.1 Neural Network

For this model we trained a feed forward multilayer percep-
tron. The input layer of the neural network has 256 units,
corresponding to the the samples of the datasets S; and
So. The was a hidden layer and an output function which
had sigmoid activations that predicted the probability of the
sample belonging to the positive label. The probability of
the label belonging to the negative class was defined such
that the sum of probabilities of the positive and the negative
classes is 1. Thus,

Py =1|X) = o(WX +b)
ply=0X)=1—Ply=1X)=1-c(WX +b)

The loss function applied to the neural network was sig-
moid cross entropy such that

L(X,y) = ylogy + (1 — y)log(1 — 7)

The training is done using stochastic gradient descent
where parameters are iteratively updated given the gradient
with respect to the loss function as follows:-

OL(X,y)

W=W-=n—m

Specifics about the training are provided in the section de-
scribing the results.

3.1.2 XGBoost with Logistic Regression learning task

We trained a XGBoost [2] tree boosting classifier with a lo-
gistic regression learning task. The model is very close to
the structure of the neural network described above, but is
void of any hidden layer representation. It is an extreme
boosting algorithm and therefore provides a very strong en-
semble learner as compared to a single tree for supervised
learning problems. This allows us to see if the data follows
a linear distribution such that a linear hyperplane in a d di-
mensional space can describe the dataset .S; and S5 well.
The loss function to train the XGBoost model is also the
Sigmoid Cross Entropy function described above in section
3.1.1.

3.2. Adversarial Training for Fake signal generation

This section explains how we trained a GAN for generat-
ing fake user signals, that we then use to make our classifier
more robust. The following sections discuss the training of
a Generative Adversarial Network for generation of “fake”
signals for the positive user.

3.2.1 Generative Adversarial Networks

A method for unsupervised learning, GANs [6] have shown
tremendous potential for learning about complicated distri-
butions [6, 10]. A GAN consists of two neural networks,
D and G. The network G is called a generator, and the
network D is called a discriminator. In the simplest case,
our data consists of a set Z € Sy of unlabeled data points
(passthoughts EEG signals for a subject). The goal of the
generator is to take random noise as an input and produce
an output that “looks real”, as if it came from Z. The goal of
the discriminator is to take an input and decide whether it
came from a generator network or a real data set. We train
these networks together, so that each network will enable
the other to improve, with the end result that the generator
learns to generate highly realistic outputs that consistently
“fool” the discriminator.

3.2.2 Simple GAN
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Figure 1. The structure of a Generative Adversarial Network. The
red graph structure represents the generator neural network and the
blue graph represents the discriminator neural network. A noise
source is fed as input to the generator that transforms it into the
output space representing the data distribution. It is then fed into
the discriminator neural network along with a sample of the real
data, which then tries to differentiate between the generated sig-
nals and the real data. The optimization is configured so that each
of the generator and the discriminator want to make the task harder
for the other. Hence over time, the generator gets better at gener-
ating fake signals.

The generator network is a small neural network with
three layers. The input is a 100-dimensional noise vector z
where z ~ N(0,1). The final output of the network is a
256-dimensional vector that is in the same feature space as
samples from the training data.

The activation function for the generator were chosen to
be leaky rectified linear activation (PReLU) [19]. This ac-
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Figure 2. The complete pipeline for training a robust authentication model. A EEG based classifier is trained to authenticate the “positive”
user in S> from all other “negative” examples in S1. A Generative Adversarial Network (GAN) is trained on positive examples to generate
fake signals. The generated signals are then used as “negative” examples to augment the training data S; and retrain the classifier to make

it more robust.

tivation function allows for gradient to be back-propogated
without any saturation points in either the positive or nega-
tive directions.

PReLU(z) = max(x, o * x)

Other non-linearities like the hyperbolic-tangent and sig-
moid suffered from the vanishing gradient problem [7] and
hence made the generator more unstable. The slope alpha of
the leaky ReLU is a hyper parameter which was chosen us-
ing grid search [1]. The structure of the neural network parts
(both the generator and the discriminator) were chosen to be
3 layers feed forward networks that are popular in literature
[6]. The size of the hidden layer was chosen to be 1200 neu-
rons. The parameter initialization plays a significant role in
the optimization of generative adversarial network. Each
parameter w is initialized uniformly randomly with “large”
bounds such that w ~ U(—1.0,1.0). The hyper-parameters
chosen for optimization are equally important. The learning
rate is set to be 1e — 3 with no regularization penalty.

The loss function for the GAN is then defined as follows:

LG = _log(Dfake)LD = log(Dreal) + lOg(l - Dfake)

Here the generator is essentially trying to increase the
log likelihood or decrease the negative log likelihood of
the “fake” data while the discriminator is trying to decrease

the log likelihood of the “fake” data and simultaneously in-
crease the likelihood of the “real” data.

3.2.3 Feature Similarity Learning

The training of the simple GAN described above is suscep-
tible to exploding gradients because of the non-convergent
nature of the joint objective function defined above. While
trying to minimize the overall cost function the generator
often collapses. This means that the generator fails to mini-
mize its cost function and so the discriminator minimizes its
loss function by simply classifying anything that the GAN
generates as a negative example. Thus the generator never
learns the data distribution and the generated samples are
close to random noise from which the prior z is sampled.
Therefore, the objective function of the generator is modi-
fied and redefined to be more convex. The cost function of
the generator was modified so that it becomes:

L = Lg + |rqg — gal®

Where r; is the pre-activation for the discriminator when
input is real data and r is the the pre-activation for the dis-
criminator when generated data is passed through the dis-
criminator. Now the generator not only increases the log
likelihood of the generated data by decreasing its negative
log likelihood, but also tries to decrease the L2 distance be-



tween the activation that the discriminator produces when
real and generated are provided to it for classification.

3.2.4 How much data is required to train the GAN?

In addition to re-training the GAN using the entire posi-
tive dataset, we also conducted a preliminary experiment
where we re-trained the GAN using just 50% and 25% of
the dataset. For the experiment with 50%, the data for
training the GAN is obtained by choosing the first 29 days
of the training data in S3. We generated 10,000 signals
which were statistically significant to augment the “nega-
tive” dataset S; without overwhelming it. For the experi-
ment that was using only 25% of the available data in S5
using only the first 14 days, the GAN collapses, which im-
plies that the generator cannot generate data very different
from the noise it was input. This could be because the GAN
starts to over fit on the small amount of variation that this
subset of Sy has.

3.2.5 Noise Analysis

In order to make sure that the GAN trained above is actually
able to generate fake signals that have the same distribution
as the real signals, and not just a noisy version of the train-
ing samples provided to the GAN, we added noise of dif-
ferent magnitudes to the positive sample data, and observed
how the baseline classifier behaves. On addition of noise of
any reasonable magnitude, the classifier was able to detect
the signals as synthetic. This provides some empirical evi-
dence that the classifier is robust against unstructured noise.

3.3. Retraining of classifier with GAN generated
data

As shown in Figure 2 the classifier was re-trained with
the signals generated by the GAN. Out of the generated
10,000 signals, 8,000 were used in the training of the classi-
fier, labeled as negative examples. These were added to the
negative examples defined above. The remaining 2,000 sig-
nals were used as the test set. The trained classifier learned
to distinguish between the positive dataset and the fake gen-
erated signals classifying them as negative. In order to be
able to separate the real and the fake generated signals, the
classifier spent some energy to learn very specific features
that could allow it to make this discrimination. This made
the overall classifier more robust in the process (as can be
seen from the accuracy numbers shown in later sections).

4. Results

In this study we try to alleviate the problems of tradi-
tional EEG based user authentication systems by training
a robust classifier using a generative adversarial network
(GAN). We first analyze the performance of a standalone

classifier, trained on pre-recorded data. We show that this
classifier is easily tricked into accepting the synthetic data
generated by our GAN. Next, we show that we can protect
against this attack by training the original classifier against
GAN-synthesized data.

4.1. Training the classifier to detect a user

Empirical evidence shows that the XGBoost classifier
worked best for the task of binary classification. This clas-
sifier achieves a baseline classification accuracy of 90.8%
to distinguish between the positive subject and the negative
samples.

4.2. Re-training classifier for added robustness

To test the robustness of this classifier we tested it with
the signals generated by the GAN and it accepted the fake
signals 100% of the time with a False Acceptance Rate
(FAR) of 1, suggesting that the GAN was able to learn the
underlying data distribution very well and able to generate
signals similar to the real signals for the user of interest.
This also shows that the baseline classifier is not trained
enough and not resilient to such attacks. In order to make
sure that our classifier is thus robust to such attacks and also
in general, we re-train our classifiers as described in section
3.4. Thus, the new classifier trained on the generated dataset
as well was able to distinguish the fake signals from the real
signals. As an additional benefit, its accuracy on the orig-
inal task of recognizing a subject went up from 90.8% to
91.9% as it was forced to learn intrinsic signals character-
istics for this user. The results are summarized in Table 1.
To explore how much data was required to train the GAN to
produce fake signals, we also trained the GAN using only
half of the positive samples available as discussed in section
3.2.4 to generate around 10,000 fake signals. These sig-
nals were tested on the baseline classifier and the classifier
treated them as “positive” with a FAR of 1. These signals
were also used to re-train the baseline classifier as described
in section 3.4. Now the re-trained classifier was able to dis-
tinguish the fake signals from the real signals, similarly as
discussed above. The accuracy of this classifier of recogniz-
ing the “positive” subject increased to 95.0% with a False
Acceptance Rate (FAR) of 0.03 as shown in Table 1. There-
fore the classifier now was able to learn the distribution of
the positive samples even better. This improvement in accu-
racy with half of the available data indicates that the GAN
might have been underfitting earlier with all of the data in
S as it has too much variability for the number of parame-
ters that the GAN has.

5. Discussion

In this paper, we explored adversarial training for
passthoughts. One of the big challenges of training ma-
chine learning models with EEG data is the low availability



Model

Accuracy FAR FRR

Initially trained classifier

Re-trained classifier with GAN data (generated from complete sample)
Re-trained classifier with GAN data (generated from half of the sample)

90.8% 0.119  0.0683
91.9% 0.112 0.0681
95.0% 0.030  0.0680

Table 1. Comparison of models in terms of classification accuracy, FAR (False Acceptance Rate), FRR (False Rejection Rate)

of such experimental data. The low volume of data is a lim-
iting factor which prevents training of large machine learn-
ing models with a high number of parameters. With low
amounts of data it is likely to over fit any model, thereby
preventing any generalization of the solution. In the absence
of appropriate number of parameters, the relatively small
models that are trained are not able to learn the features re-
quired for an accurate authentication system. This over fit-
ting is true for our classifier that is only trained on the real
EEG data available. It follows from the experiments stated
above where such a classifier, classifies all of the synthetic
signals generated by a GAN as authentic. Thus it could lead
to potential hacking and attack strategies for our proposed
authentication methods.

Using generative adversarial models (GANs) to gener-
ate new data points, we can increase the classifiers speci-
ficity considerably. The GAN can theoretically act like a
source of large amounts of data, thus eliminating the is-
sues described above with over fitting. Besides acting as
a data source, the data generated by the GAN being from
the same data distribution as the positive samples of the real
data, but still being marked as negative examples, acts as
an adversary for the classifier that allows it to learn more
relevant features to differentiate between the real positive
data and the synthetic data generated by the GAN. As our
results show above, the accuracy of the classifier increases
after training on the GAN generated data, suggesting that
the GAN actually captured intrinsic data distribution that
also forced the classifier to learn some additional features
for the classification task reducing the FAR value, whereas
the FRR values are not adversely affected as shown in Table
1.

These experiments highlight the importance of consider-
ing such attacks while training a classifier for user authen-
tication. We recommend designing a passthoughts based
user authentication system by augmenting it with signals
generated from a Generative Adversarial Network. The re-
training of a passthoughts classifier with “fake” GAN gen-
erated data not only makes it more robust to GAN attacks
but also improves the overall accuracy of the classifier.

6. Future Work

The future work could explore the dependency of the
dataset that is provided to the GAN to learn the real sig-
nals and the quality of the fake signals thus generated by
the GAN. Currently we feed in the data for a particular sub-

ject for a block of continuous days to the GAN. We can
explore if the temporal continuity is required for the GAN
to learn the underlying distribution of the dataset and thus
to generate the fake signals. We can use the data samples
from some other consecutive block of days for a subject, or
for non-consecutive days, and study the performance of the
GAN.

In the same vein, we can explore the lower limit on the
amount of data needed for the GAN to learn the data dis-
tribution. As we saw earlier in section 3.2.4 the GAN was
not able to generate meaningful data with 25 percent of the
“positive” samples. Here we can study the performance of
the GAN along two orthogonal axes. First, if GANs provide
a hacking threat, we would like to know how many absolute
number of samples are critical for an attacker to break an
authentication system using GAN generated data. There-
fore, we would like to starve the GAN by providing little
amount of data. Second, instead of using the entire sam-
ple or half of the sample for the positive subject to generate
fake signals, we want to explore if it is possible to generate
signals for the positive subject by having very limited ac-
cess to the positive samples, for example a very small leak
of signals, together with the EEG signals of another subject,
say the attacker. In this study, we would allow the GAN to
learn from EEG signals of a larger population as a whole,
but limit the availability of the EEG data of the subject of
interest, i.e. the subject for which we want to generate the
fake signals. This will allow us to see if EEG signals in gen-
eral contribute to the learning of the GAN or it is something
specific about a subject’s data for the GAN to discover and
produce subject’s data distribution.

7. Conclusion

In this study we found that passthoughts are not with-
out their problems. The machine learning models that
are trained to act as authenticators are susceptible to at-
tack from a well trained Generative Adversarial Network
(GAN). However, GANS are both effective for attacking au-
thenticators and useful for making them robust against the
same attacks. We can leverage GANs to learn the under-
lying distribution of data and act as a large source of data
for such authentication systems. This enables us to not only
train larger machine learning models for authentication but
also the training data is augmented with examples which
are difficult to classify correctly. This allows the authenti-
cator to have higher accuracy and less false acceptance, thus



making the system more robust.
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